

"Driving the Future: Unveiling Breakthroughs in Electric Vehicle Technologies - Insights from European Research and Innovation"

Li-ion and hybrid supercapacitor batteries and DC charging for lightweight electric vehicles

Eric Verhulst, Altreonic NV, partner in Multi-Moby

P4)

Multi-Moby: Battery and charging (WP4)

Links & contact		Contribution is in topic area (x):
https://www.multi-moby.eu/	Х	Powertrain design and assessment
https://uk.linkedin.com/in/project-multi- moby-a1a85b208	х	Energy efficiency of vehicle sub-systems
Eric.Verhulst@altreonic.com www.kurt.energy		Electric/electronic/sensing architectures enabling autonomy and security of electric vehicles
@100V	х	Passive and active safety of electric vehicles
		Simulation tools for the rapid assessment and development of electric vehicles
		Product life cycle assessment, materials combination, eco-design, and other recyclability aspects

Website

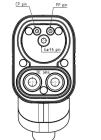
LinkedIn

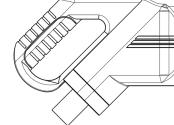
e-mail

@48V


Contribution summary

- The Multi-Moby e-vehicle is a passive and actively safe and lightweight L7/M1 eV aimed for use in urban environments
- Several battery solutions were researched and developed:
 - NMC pouch cells and LFP prismatic cells (high energy)
 - Hybrid supercapacitor (HSC) cylindrical cells (high power)
- DC low voltage charging at 48V and 100 V for efficiency
- Extensive safety focused stress and abuse tests with HSC
- Some conclusions for HSC:
 - 100% fire safety is possible with HSC
 - For example 21700 cells with Current Interrupting Device
 - Newer cells reach > 200 Wh/kg and are on-par with Li-ion

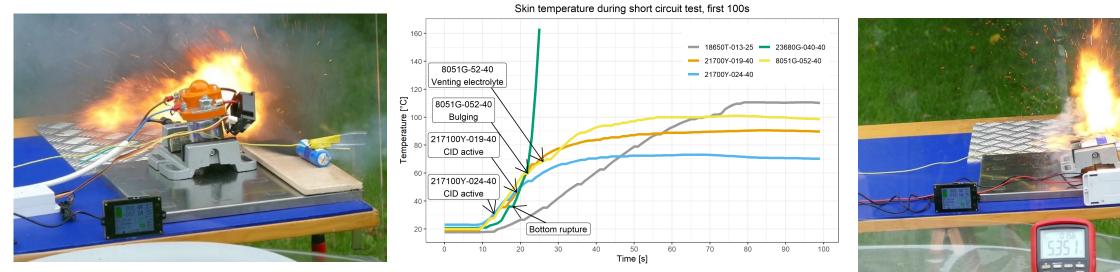

Cost-efficient battery box: thermally insulated – automated laser cutting and folding of light-weight steel metal sheets



Why DC charging?

- AC charging:
 - Connected to grid
 - AC/DC in vehicle extra weight and space in vehicle
 - Heat losses in vehicle
- DC charging:
 - Complexity of AC/DC in wall mounted box

- Less complexity and losses in vehicle
- Reuse of CCS2 connector, etc.
- Developed by Bitron with IFEVS (3 kW 48V 7 kW 110V)


Pro & cons of Li-ion vs HSC

	Li-ion	HSC
Energy density	160 Wh/kg (LFP) – 230 Wh/kg (NMC)	80 Wh/kg, 130 Wh/kg upto 200 Wh/kg
Power	< 1C, peaks to 3C, 4C	10C, < 4C (power vs. energy cell type)
DoD	60 to 80%	96%
Cycle life	typ. 3000	typ. 10000 - 20000
Thermal range	-10 to 45°C typ.	- 30 to +70°C typ.
Safety	Dendrites! Short-circuit fault mode	No dendrites.
Short circuit / overcharging risk	Low probability but catastrophic	Low probability and open-circuit fault mode (not for all cells)
Charging	30 minutes to hours	Can be very fast (10C = 6 minutes)

Stress and abuse tests on HSC

Hard short-circuit tests and overcharging tests:

- Can go very fast: 10 to 20 seconds
- Electrolyte evaporates and ignites
- Greatest risk induced externally by faulty BMS or charger
- Most BMS identified are not fault-tolerant!

Can HSC make batteries ultra-safe?

- CID device was shown to be crucially important
 - Current is interrupted) and heat generation stops
 - But not generally used (also in Li-ion battery cells)
- Not sufficient to have overpressure valve
- Only possible with cylindrical cells
- Use of silicon gel can contain avalanche effect

Overcharging tests	18650T-013-25 cylindrical alu. 2 pins)	21700Y-022-40 cylindrical steel top/bottom	21700Y-024-40 cylindrical steel top/bottom	8051G-053-40 pouch
Current [A]	5	10	10	10
Voltage @ failure [V]	4.81	5.26	5.40	7.20
Result	Explosion fire	CID triggered Cell open circuit	CID triggered Cell open circuit	Explosion fire
Max temp. incr. [°C]	55.2 (silicone)	56.0	21.2 (silicone)	75.8
Safety	Νο	Yes	Yes	Νο

Some conclusions

- Low Multi-Moby vehicle weight reduces battery size
- 4.9 kWh/100 km (WLTP) 8.4 kWh/100 km (Artemis)
- 15 kWh battery sufficient for up to 300 km (urban type driving)
- LFP batteries today best option for Li-Ion (=> Na-ion ?)
- Newest HSC reach same energy density with safety and operational benefits (temperature, power, ...)
- Today's drawback: currently more expensive (volume issue)
 - But: sustainability is also long life and less maintenance costs
- Battery cells, BMS and charger design need to designed for faults to increase fire safety

Q & A

Multi-Moby		
Website	https://www.multi-moby.eu/	
e-mail	<u>pietro.perlo@ifevs.com</u> www.ifevs.com (Vehicle project) <u>Eric.Verhulst@altreonic.com www.kurt.energy</u> (HSC) <u>alberto.ghezzi@bitron-ind.com</u> (Charger)	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006953

