

Kurt Energy

The shift to green energy needs better batteries NOW

Company background

Altreonic NV - previously Eonic Systems NV

30 years safety-critical embedded software

- Experience in trustworthy systems engineering
- ESA: Virtuoso RTOS in Rosetta mission
- International company with 45 people WW
- Sold to Wind River Systems in 2001

Today:

- 5Gen unique fault tolerant VirtuosoNext RTOS used in KURT
- GoedelWorks: Systems Engineering portal for certification
- KURT.mobi: Light Electric Vehicle for urban use
- KURT.energy: Novel type of batteries based on C-supercaps
- Electric Clean Energy is the new economic vector

Applying technology: Kurt.mobi

KURT for urban mobility: one scalable concept

<u>City-KURT:</u> Small yet powerful

Last mile delivery

<u>Shuttle-KURT:</u> the only L7-shuttle below 450 kg

Cost-efficient yet robust Optimal e-consumption Very fast e-charging Multi-purpose & modular Safety & Reliability

Designed with autonomous driving in mind

Kurt.energy: Tackling the battery and energy issue

Game changing hybrid carbon based power capacitors

Similar energy density like lithium-ion batteries with the benefits of supercapacitors.

- 1. **Can burn** => Carbon power capacitors **DO NOT BURN**
- 2. **Too heavy** => Carbon power capacitor pack can be 1/3 smaller
- 3. Short peak power capacity => Sustained high peak capacity (5-20X)
- 4. Made with problematic rare metals => Few rare metals
- 5. Loss of power in cold environments => Works -40°C/+80°C
- 6. Need powerchargers to charge rapidly => smaller fast chargers
- Need lots of cells and electronics (hence higher cost) => Same performance with 1/3 size, no BMS, no active thermal management

Combination of high energy density, high power density and safety provides a game-changing opportunity

Research on Lithium based batteries promises better and safe batteries but are they in production? **Our carbon power capacitors are in production**.

The total cost of the solution is lower than with Li-supercapacitors. The price will be comparable to Lithium based batteries when independent volume production begins. Lifecycle cost already significantly lower.

Comparison of batteries and C-powercaps

	Lithium iron phosphate battery	NMC lithium battery	Lithium titanate battery	Lithium based super capacitor	Power-type C- powercap	Energy-type C- powercap
Energy density (Wh/kg)	90 - 150	180 - 250	70 - 95	4 - 6	80 - 100	180 - 230
Power density (kW/kg)	0.1 - 0.2	0.1 - 0.5	0.5 - 1	5 - 7	1 - 1.5	0.3 - 0.5
Typical charging/ discharging rates	1.0 C	0.7 - 1.0 C	1.0 - 5.0 C	100.0 - 200.0 C	10.0 - 20.0 C	1.0 - 1.25 C
Working temperature (°C)	-10 ~ 55	-20 ~ 45	-40 ~ 60	-40 ~ 65	-20 / -40 ~ +80	-20 / -40 ~ +80
Cycle life (times)	2000	2000	5000	> 500000	> 20000	> 10000
Safety	acceptable	not good	good	excellent	excellent	excellent
Complexity	Medium: BMS needed	High: BMS needed + thermal mgt	Medium: BMS	Low: no BMS, passive cooling	Low: no BMS, passive cooling	Low: no BMS, passive cooling

Power capacitor = energy + power

Argone chart: comparison

KURT.Energy: Energy for Life, Blue Cell Power

Go to market strategy Europe 2019

- 1. Kurt.energy has an exclusive agreement to develop the market for the cell manufacturer in China
- 2. China focuses on cell production and China/SE-Asia market
- 3. Kurt.energy focuses on:
 - Business development EU and worldwide
 - System level design and local assembly
 - Roadmap for assembly and production in Europe
- 4. Focus first on premium market segments:
 - High Power requirements
 - High safety, reliability and lifetime requirements
 - Fast charging
- 5. Focus markets:
 - Hybrid drives
 - Wind turbines
 - Emergency Power Supplies (UPS)

First application: car battery

Advantages:

- No lead inside
- Lighter
- Fuel consumption (-2 to -5 %)
- No issues @ -20°C
- Longer lifetime
- Constant capacity over lifetime

Proven applications

- Developed and tested in China:
- Premium car battery (CUSCO JP, Subaru).
 Reduces fuel consumption up to 8%
- Windmill blade trimming and pitch control: 2x cheaper and 3x better than Li-supercaps
- Serial hybrid city vehicles:
 - Battery reduced from 2 ton to 300 kg
 - Fuel consumption 2I/100km/ton vehicle
 - Better energy recuperation (braking)
 - No need for charging infrastructure
- Grid stabilisation:
 - Much smaller battery needed
- Fork lifts / heavy tractors:
 - Smaller batteries
 - but fast recharging

Space

Old-timer electrification

Energy storage

Grid stabilization

Street lighting

Welding equipment

Hand-held power tools

Home energy system

Power mills

Confirmed by external test & stress & abuse tests

Test 4773 | 18650 | Cell 22 | WLTP test

Charging in 10 minutes to 75%

Discharging at 0.5, 1C, 5C, 10C

T < 35 °C in ambient air

3.4 Wh charged & discharged

Charging at 5C (6.5 A), discharging at 0.5C, 1C, 5C, 10C, simulating WLTP cycle

Tests at FlandersMake Lommel

Stress test at 20C (26A)

Charging in 22 minutes to 75%

Charging and discharging with 1.C (1.0 A) upto 10C (10.0 A)

Temperature peaks at 55°C remains below 30°C up to 5C

3,2 Wh charged & discharged

Charging in 5 minutes to 75%

Charging and discharging with 1C (1.3 A) upto 20C (26.0 A)

Temperature peaks at 75°C remains below 60°C up to 10C

3,5 Wh charged & discharged

Charging at 5C in 22 minutes to 75%

Discharging from 9C (9.0 A) upto 20C (20.0 A)

Temperature peaks at 60°., Remains below 40°C till 10C

Charge capacity unaffected

Charging at 5C in 5 minutes to 75%

Discharging from 16C (20.8 A) upto 38C (49.4 A)

Temperature peaks at 42°C, remains below 40°C upto 16C

Charge capacity unaffected

Charging at 3C in 25 minutes to 50%

2X Pulse (200 ms) discharging from 20C (20 A) upto 70C (70 A)

No measurable temperature increase

Discharge capacity not affected

Note: tester limit 80A

Test 4822 | 18650 | Cell 25 | Peak Discharge 200ms

Charging at 3C in 5 minutes to 75%

2X Pulse (200 ms) discharging from 10C (13 A) upto 60C (78 A)

No measurable temperature increase

Discharge capacity not affected

Note: tester limit 80A

Why no BMS?

No Active balancing needed:

- Cells are matched at assembly time
- Connected in "rectangular" S xP mesh
- Hence, no need for active balancing
- Benefits:
 - Much simpler, better use of space
 - Robustness: BMS has many parts that can fail and age
 - · Less "extra" weight
 - \cdot If a cell fails:
 - (unlikely, only when penetrated or short circuit)
 - · Fails as an open circuit
 - Battery remains operational

Why no active thermal management system?

Powercapacitors remain cool

- Low internal resistance
- Can tolerate low and high temperatures
 - · (high temperatures will affect lifetime, as for any technology)
 - No risk of thermal runaway
- Good design practice:
 - Keep C-rate < 5C for 18500, < 10C for 18650
 - Occasional higher rates are not a problem
 - Keep things "cooled" => enclose in heat absorbing package
- Benefits:
 - Save a lot of complexity
 - Save a lot of weight

Construction of a power capacitor pack

Safety standards

- EMC test report
- EN 62133-2
- MSDS
- ROHS
- REACH
- Full certification package available

A catalyser in clean energy

Applications of C-based supercaps

- Powerbanks (charging in 10 min): internal development
- Starter batteries (for ICE vehicles)
- Hybrid batteries
- Serial hybrid vehicle drives
- Vehicle batteries:
 - First customer (agricultural vehicles)
 - Heavy duty vehicles (e.g. mining)
- Fast charging vehicle batteries:
 - Potential project for airport cargo tractors
- Energy buffering storage: see Energy Site
- Frequency grid adjustment: see Energy Site
- Building energy system: initial prospects discussions

Roadmap: Total clean energy production and storage

Clean Energy Site: linking transport

- Clean energy = diversity + buffering + unstable grid
- MWh container batteries
- Higher efficiency through:
 - EMS (Energy Mgt Sys)
 - Rotating batteries
 - Buffer (when energy is cheap)
 - H2
 - Grid stabilisation
 - Swapping: for electrified inland shipping

KURT.mobi, KURT.energy

eric.verhulst@altreonic.com CEO/CTO +32 477 60 83 39

annie.dejonghe@altreonic.com CEO/CFO +32 497 53 29 63

Altreonic NV

Gemeentestraat 61A/1 3210 Linden. Expl. Nieuwlandlaan71 / B411 3200, Aarschot

